A 5' dystrophin duplication mutation causes membrane deficiency of alpha-dystroglycan in a family with X-linked cardiomyopathy.
نویسندگان
چکیده
5'-mutations in the dystrophin gene can result in cardiomyopathy without clinically-apparent skeletal myopathy. The effect of dystrophin mutations on the assembly and stability of the dystrophin associated protein (DAP) complex in human heart are not fully understood. The molecular defect in the dystrophin complex was explored in a family with an X-linked pedigree and severe dilated cardiomyopathy. Dystrophin gene analysis demonstrated a 5' duplication involving exons 2-7, which encodes the N-terminal actin binding domain of dystrophin. Ribonuclease protection and PCR assays demonstrated a reduction in muscle promoter transcribed dystrophin mRNA in the heart compared to skeletal muscle. A deficiency of cardiac dystrophin protein was observed by Western blot and lack of membrane localization by immunocytochemistry. The cardiac expression of the dystrophin related protein utrophin was increased, and the 43 kDa (beta-dystroglycan), 50 kDa (alpha-sarcoglycan) and 59 kDa (syntrophin) dystrophin associated proteins (DAPs) were co-isolated and present in nearly normal amounts in the membrane. However, cardiac dystrophin deficiency and increased utrophin expression were associated with loss of extracellular 156 kDa dystrophin associated glycoprotein (alpha-dystroglycan) binding to the cardiomyocyte membrane. alpha-Dystroglycan is responsible for linkage of the dystrophin complex to the extracellular matrix protein laminin. Therefore, 5' dystrophin mutations can reduce cardiac dystrophin mRNA, protein expression, and dystrophin function in X-linked cardiomyopathy (XLCM). The presence of membrane-associated beta-dystroglycan, alpha-sarcoglycan, syntrophin, and utrophin are insufficient to maintain cardiac function. This XLCM family has a 5' dystrophin gene mutation resulting in cardiac dystrophin deficiency and a loss of alpha-dystroglycan membrane binding.
منابع مشابه
Detection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملDeficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex
Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant di...
متن کاملRepression-free utrophin-A 5’UTR variants
Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...
متن کاملγ-Sarcoglycan Deficiency Leads to Muscle Membrane Defects and Apoptosis Independent of Dystrophin
gamma-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine gamma-sarcoglycan gene was disrupted using homologous recombination. Mice lacking gamma-sarcoglycan showed pronounced dystrophic muscle changes in early life. By 20 wk of age, these mice developed cardiomyopathy and died prematurely. The loss of gamma-sarcoglycan produced sec...
متن کاملAutosomal Recessive Dilated Cardiomyopathy due to DOLK Mutations Results from Abnormal Dystroglycan O-Mannosylation
Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular and cellular cardiology
دوره 29 12 شماره
صفحات -
تاریخ انتشار 1997